Networ k-awar e M obile Programs*

M.Ranganathan, Anurag Acharya, Shamik D. Sharmaand Joel Saltz
Department of Comptuer Science
University of Maryland
College Park, MD 20740

Abstract

In this paper, we investigate network-aware mobile pro-
grams, programs that can use mobility as a tool to adapt
to variationsin network characteristics. We present infras-
tructural support for mobility and network monitoring and
show how adapt al k, a Java-based mobile Internet chat
application can take advantage of this support to dynami-
cally placethe chat server so asto minimizeresponsetime.
Our conclusion was that on-line network monitoring and
adaptive placement of shared data-structures can signifi-
cantly improve performance of distributed applicationson
the Internet.

1 Introduction

A mobile program can move code, data or an active
thread of control from site to site in a distributed environ-
ment. This flexibility has many potential advantages. For
example, a program that searches distributed data repos-
itories can improve its performance by migrating to the
repositories and performing the search on-site instead of
fetching all thedatatoitscurrent location. Similarly, anin-
ternet video-conferencing application can minimize overall
response time by positioning its server based on the loca
tion of its users. The primary advantage of mobility in
these scenarios is that it can be used as a tool to adapt
to variations in the operating environment. Applications
can use online information about their operating environ-
ment and knowledge of their own resource reguirements
to make judicious decisions about placement of code, data
and threads of control.

In this paper, we investigate network-aware mobile pro-
grams, i.e. programs that can postion their computational
elements and data structures based on their knowledge of
network characteristics so asto improvetheir performance.
In particular we investigate what policies are suitable for
making mobility decision ? Second, is the variation in

*This research was supported by ARPA under contract #F19628-94-
C-0057, Syracuse subcontract #353-1427

network characteristics such that adapting to them proves
profitable. Finaly, can adequate network information be
proveded to mobile applications at an acceptable cost.

In order to adapt to network variations, mobileprograms
must be able to decide when to move, what to move and
whereto move. There are threetypesof network variations
which may be cause for migration: (1) popul at i on vari-
ations, which represent changes in the distribution of users
on thenetwork, as sitesjoin or |eave an ongoing distributed
computation; (2) spati al variations, i.e. sable dif-
ferences between in the qudity of different links, which
are primarily due the host’s connectivity to the internet;
and (3) t empor al variations, i.e. changes in the qual-
ity of alink over a period of time, which are presumably
caused by changes in cross-traffic patterns and end-point
loads. Spatia variations can be handled by a one-time
placement based on theinformation available at the begin-
ning of a run. Adapting to temporal and population vari-
ations requires dynamic placement which needs a periodic
cost-benefit analysis of current and alternative placements
of computation and objects. Dynamic placement decisions
have two partialy conflicting goals: maximize the perfor-
mance improvement from mobility and minimize the cost
of mobility. If an opportunity for improving performance
presents itself, it should be capitalized upon; however, re-
acting too rapidly to changes in the network characteristics
can lead to performance degradation as the performance
gain may not offset the mobility cost.

We investigate these issues in the context of Sumatra,
an extension of the J ava® programming environment [10]
that provides a flexible substrate for adaptive mobile pro-
grams. Since, mobile programs are scarce, we devel oped
our own mobile internet chat server. This application,
called adapt al k, monitorsthe latencies between all par-
ticipants and locates the chat server so as to minimize the
maximum responsetime. We sel ected thisapplication since
it ishighly interactive and requires fine-grain communica
tion. If such an application is able to take advantage of
information about network characteristics, we expect that

LJavais aregistered trademark of Sun Microsystems

many other distributed applicationsover theinternet would
be similarly successful. The resource that governs the mi-
gration decisions of adapt al k is network latency. To
provide latency information, we have developed Komodo,
a distributed network latency monitor.

To evaluate if mobile applications can take advantage
of network-awareness, we examined the performance of
adapt al k with and without mobility. Our evaluation had
two main goas: (1) to determine the performance ben-
efits, if any, of network-aware placement of the central
chat server over a network-obliviousplacement; and (2) to
determine if dynamic placement based on online network
monitoring provides significant performance gains over a
one-time placement based on initial information. Our re-
sultsare encouraging - they indicatethat on-linemonitoring
and dynamic placement can significantly improve perfor-
mance of distributed applications on the Internet.

Thispaper isafirst stepin demonstrating that distributed
programs can use mobility as a tool to adapt to variations
in their operating environment. The main contribution of
thiswork isthat it showsthe feasibility and profitability of
this approach. We establish feasibility by providing a pro-
gramming interface and efficient system support for thread
and object migration in Sumatra. Our experiments with
Komodo and adapt al k indicate that network-aware pro-
grams can successfully use mobility to adapt to spatia and
temporal variationsin network latency over theinternet.

The paper is organized as follows. Section 2 describes
Sumatra and the programming model that it provides. Sec-
tion 3 describesthe design and i mplementati on of Komodo.
Section 4 describes the adapt al k application and the
policy it uses to make mobility decisions. Section 5 de-
scribes our experiments and presents the results. Section 6
discusses the results and their implications. Section 7 de-
scribesrelated work and Section 8 providesour conclusions
and plans for future work.

2 Sumatra; aJavathat walks

Sumatrais an extension of the Java programming envi-
ronment that supportsadaptive mobileprograms. Platform-
independence was the primary rationale for choosing Java
as the base for our effort. In the design of Sumatra, we
have not atered the Java language. Sumatra can run all
legal Java programswithout modification. All added func-
tionality was provided by extending the Java class library
and by modifying the Javainterpreter without affecting the
virtual machineinterface.

Our design philosophy for Sumatra was to provide the
mechanisms to build adaptive mobile programs. Policy de-
cisions concerning when, where and what move are |eft to

the application. The main feature that distinguishes Suma-
trafrom previoussystems [3, 6, 24, 13] that support mobile
programsisthat all communication and migration happens
under application control. Furthermore, combination of
distributed objects and thread migration alows applica-
tionstheflexibility to dynamically choose between moving
either data or computation. The high degree of application
control allowsusto easily explore different policy aterna-
tivesfor resource monitoring and for adapting to variations
in resources. We believe that the space of design choices
for adaptive mobile programs is yet to be mapped out and
such flexibility isimportant to help explorethis space.

Sumatra adds two programming abstractions to Java:
object-groups and execution engines. An object-groupisa
dynamically created group of objects. Objectscan beadded
to or removed from existing object-groups. All objects
within an object-group are treated as a unit for mobility-
related operations. This alows the programmer to cus-
tomizethegranularity of movement and to amortizethe cost
of moving and tracking individua objects. Thisis partic-
ularly important in languages like Java because every data
structureis an object and moving the state, one object a a
time, can be prohibitively expensive. An execution-engine
istheabstraction of alocation in adistributed environment.
In concreteterms, it correspondsto an interpreter executing
on ahost. Sumatra alows object-groups to be moved be-
tween execution-engines. An execution-engine may aso
host an active thread of control. Currently, the implemen-
tation does not support multi-threaded mobile programs.
Threads can move between execution-engines.

The principa new operations provided by Sumatra are:

Object Migration: Objects on the heap can be checked
into or out of an object group at application request. Object
groups may be moved between engines. During motion,
objectsin the object group are automatically marshalled us-
ing type-information stored in their class templates. When
an object-group is moved, al loca references to objects
includedin the group (stack references and references from
other objects) are converted into proxy references where
the new location of the object is recorded. Some objects,
such as /O objects, are tightly bound to local resources and
cannot be moved. References to such objects are reset and
must bereinitiaized at thenew site. Theclasstemplate (and
associated bytecode) for an object can be downloaded into
an execution-engine on application request. Downloaded
class-templatesarecached; theCl assLoader checksthis
cache before checking the locd file system.

Remote Method Invocation: Method invocations on
proxy objects are transparently translated into calls at the
remote site. Type information stored in class-templatesis
used to achieve RPC functionality without a stub compiler.

Exceptions, generated at thecalled siteareforwarded to the
caler. If an object is shared between threads on different
engines, it is possible that the object can move without
the knowledge of one or more engines. In such cases,
sending aremote method invocation to the expected site of
the object returns an object-moved exception along with a
new forwarding addressto caller. Thecaller can handlethe
exception as it deemsfit (e.g., re-issue the request, migrate
to the forwarded location, raise a further exception and so
on).

Thread migration: Sumatraalowsexplicit thread migra-
tionusing aengi ne. go() function that bundles up the
stack and the program counter and restarts execution at the
specified execution-engine. To automatically marsha the
stack, the Sumatra interpreter maintains a type stack, par-
alel to the value stack, which keeps track of the types of
all variables on the stack. When a thread migrates, Suma-
tratransports with it, all objects that are referenced by the
stack but are not apart of any object-group. All stack refer-
ences to objects that are left behind (i.e were part of some
object-group) are converted to references to proxy objects.
After migration, many of the proxy references on the stack
may actually refer to objectsthat are on the destination site;
thesereferences are converted tolocal references beforethe
cal to go returns.

Remoteexecution: A new thread of control can be created
by rexec’ing the mai n method of a class existing on are-
mote engine. The arguments for the invocation are copied
and moved to the remote site. Unlike remote method in-
vocation, remote execution is non-blocking; the calling
thread resumes immediately after the mai n method call is
sent to the remote engine. Currently, Sumatra imposes the
restriction that concurrent threads must execute on differ-
ent engines. Concurrent threads communicate using calls
to shared objects. The thread initiating a remote execu-
tion can share objects with the new thread by passing it
references to these objects as arguments to mai n.

Thread migration alows movement of control at arbi-
trary pointsintheexecution. For example, aremotemethod
invocation may migrate based on some dataor environment
dependent condition - thereby causing the control to return
from a location different from the original target of the
remote invocation.

Remote Signal Handlers: Sumatra allows the user to
write a signa handler in Java. This alows remote sig-
nal handlers to be installed. Signa handlers are a simple
method of implementing "up-calls'. For example, a server
that produces periodic data may place the data in some
"well known" location and signal the engine in which a
signa handler isinstalled. The signa handler may then
pick up the datafrom the well known location.

2.1 Example

Say we want to look through a database of X-ray images
stored at a remote site and apply a quick selection ago-
rithm to extract "interesting" lung images. These images
are then subjected to a more compute-intensive cancer-
detection process. One way to write the program would
be to download al images from the image server and do
all the processing locally. Thismay cause long delays due
to the network traffic involved. Another approach would
be to send the selection procedure to the site of the image
database. Only "interesting" images would be sent back to
the main program, grestly reducing network requirements.
A third, and even more flexible approach would alow the
shipped selection procedure to extract al the interesting
images from the database but return only the size of the
extracted images to themain program. If thesizeisstill too
big, the program may choose to move itself to the database
site and perform the cancer-detection computation there
rather than downloading all the data - thereby avoiding the
network bottleneck while paying the cost of slower process-
ing at the server. On the other hand if the sizeis small, the
datacan be shipped over and processed locally withafaster
native method. The code in Figure 1 shows this adaptive
version of the code. This program makes its decision to
migrate in a rudimentary fashion; a more realistic version
of thisapplication would a so take network bandwidth and
the relative processing power available on both machines
into account for migration decisions.

We next describe a distributed monitor that allows net-
work latency information to be gathered by Surat r a ap-
plicationsin order to make mobility decisions.

3 Komodo: a distributed network latency
monitor

Komodo? isa distributed network latency monitor. The
design principles of Komodo are: low-cost active mon-
itoring and fault-tolerance. Active monitoring uses sepa-
rate messages for monitoring, passive monitoring generates
no new messages and piggybacks monitoring information
on existing messages. An active monitoring approach is
needed for adapt al k (described in the next section) as
passive monitoring cannot provideinformation about links
that are not used in the current placement but could be used
in dternative placements. It isour working hypothesisthat
effective mobility decisions can be based on medium-term
(30sec-few minutes) and long-term (hours) variations. At
these resol utions, we believe that active monitoring can be

2K omodo dragons are a species of monitor lizardsfound on the island
of Komodo which is close to both Java and Sumatra.

| ung_obj ect = new Lung();
nyengi ne = System rpc. nyEngi ne();

// Create aengine at the xray database site.

remot e_engi ne = new Engi ne(" xrays. gov");
/I Send the lung class-template to the remote engine
renmot e_engi ne. downl oadCl ass("Lung");

/I Create a new object group.

obj group = new Obj Group("!| ung_group");

/I Add the lung_object to the object group

obj group. checkl n(| ung_obj ect);

/I Move the object group to the database site

obj group. noveTo(r enpt e_engi ne) ;

/I aremote method call selectsinteresting xrays
si ze = lung.obj ect. query(db, "Bi gLungs");

/I Are there too many images to bring over?

f (size > too_many.i mages) {

/I Migrate thread, processimages and return.

r enot e_engi ne. go() ;

result = lung-object. detect _cancer();
nyengi ne. go() ;

}

el se {

}

/l there are only afew interesting xrays. Fetch them
/I and processlocally, using afaster native method.

obj group. noveTo(nyengi ne) ;
result = lung-object.n_detect_cancer();

/I display result locally
System di spl ay(resul t);

Figure 1. Excerpt of a Sumatra program that adaptively migratesto reduce its network bandwidth requirements

achieved at an acceptable cost. This section briefly de-
scribes the design and implementation of Komodo.

Komodo allows applications to initiate monitoring of
network latency between any pair of hosts running the
monitor. The application need not be resident on one of
the hostsin the host-pair being monitored. Komodoisim-
plemented as a user-level daemon that runs on every host.
Applications pass monitoring requests to their local Ko-
modo daemon. If the requested link includes the current
host, the local daemon handles the request. Otherwise, it
forwardsthe request to the daemon on the appropriate host.
Each daemon monitorsthe UDP-level latency on anetwork
link for which it has recei ved monitoring requests, by send-
ing a 32-byte UDP packet to the daemon on the other end
of the link of interest. If an echo is not received within
an expected interval, (the maximum of the ping period or
five times the current round trip time estimate) the packet
is retransmitted. Using UDP for communication may, oc-
casionally, lead to loss of messages. Message loss can
lead only to a short-term loss of efficiency. Aswe expect
monitoring requirementsto be coarse-grained, the effect of
packet loss should be small.

Applicationsthat initiate a monitoring request can con-
trol the frequency with which Komodo pings the specified
link to a maximum upper bound. Applications need to re-
fresh requests periodically to keep them aive; otherwise,
Komodo dropsthe request after a specified period of time.

The latency measures acquired by Komodo are passed
through a filter before being provided to the applications.
This filter eliminates singleton impulses as well as noise
within ajitter threshold (we use a jitter threshold of 10ms,
whichistheresolutionof most Unix timers). If themeasure

changes rapidly, a moving window average is generated.
Thefilter producesastepwise constant output which reflects
theaverage trend of the ping measurements. Thisfilter was
designed on the basis of our study of a large humber of
internet latency traces (see Section 5.1) which revea ed that:
(2) thereisalot of short-term jitter in the latency measures
but in most cases, thejitterissmall; (2) thereare occasiona
jumpsin latency that appear only for asingle ping; (3) for
some traces, the latency measure fluctuates rapidly; (4) the
rtt measures show an "approximately stepwise" behavior
- that is a definite trend (median value within a window)
which has abrupt jumps. Similar observations have been
made by others[5]. Figure 2(a) illustratesthe operation of
thefilter.

Each daemon maintains a cache of current latency esti-
mates for all its currently active monitoring requests. This
cache is maintained in a well-known shared memory seg-
ment and can beefficiently read by all Sumatraapplications
executing onthe samemachine. Cooperating Konodo dae-
mons forward latency information in response to persistent
remote requests. A latency estimate for a request received
from another host is forwarded only when a new filtered
estimate (different from the previous filtered estimate) is
generated and is piggy-backed onto a ping reply if possi-
ble.

To address concerns about the cost of active monitoring,
we measured the CPU utilization of Komodo for varying
number of links. We determined that that the maximum
CPU utilizationfor upto eight linksislessthan 0.4 %. The
amount of data transferred is 256 bytes per second. Also,
for up to eight links, the CPU utilization scales linearly.
By extrapolation, the load for 20 hosts would be 1% CPU

700 T T T T T

Filtered —
600

500

n
£
o 400t
£
2
T30
3
¢
1
200
LDF &
L‘]——u_\]__J LFL:‘_; Lo _Iﬁ ’J—luﬁ]—‘ | ﬂ—,
| # Sl 80 e 10| T &

0 1 1 1 1 1
0 100 200 300 400 500 600
Time (seconds)

(a) Operation of the Komodo filter

CPU Overhead (%)

0.5

0.4

0.3

0.2

0.1
T T T 1
2 4 8

0.0 H
1
Number of links monitored
(b) CPU utilization of Komodo

Figure 2. (&) The input to the filter is a 10-minute trace of one-per-second latency measures between
baekdoo. cs. und. edu and | anl . gov. Note that the four single-ping impulses towards the right end have been
eliminated. (b) The CPU utilization is computed by dividing the (user+system) time by the total running time. Each
experiment was run for 1000 seconds with one ping per second for al links.

utilization and 640 bytes/sec datatransfer.® Further details
about Konodo are presented in [23].

4 Adapt al k: An adaptiveinternet chat ap-
plication

Adapt al k isarelatively smple network chat applica-
tion built using Sumatra and Komodo. It alows multiple
users to have an online conversation; new participants can
join an ongoing conversation at any point; multiple in-
dependent conversations can be held. To ensure that all
partici pants see the same conversation and that new partic-
ipants can join ongoing conversations, a central server is
used to serialize and broadcast the contributions.

Adapt al k has been divided into three components:
handling keyboard events, managing thechat screen and co-
ordinating the communication between participants. Each
component is implemented by a separate object-group.
Each host participating in the conversation runs two
execution-engines, one houses the scr een object-group
and the other houses the keyboar d object-group. The
central server isimplemented as a separate shared object-
group, nsgboar d, which can (and does) move between

3This assumes that the linear scaling holds; given the low utilization
there is no reason to believe that it would not.

hosts participating in the conversation, positioning itself
within the engine that houses the screen on its cur-
rent host. Each message issued by a participant starts
from a keyboar d which invokes a remote method on
themsgboar d. Thenmsgboar d serializesincoming mes-
sages and issues asuccessi on of remote-executi on reguests,
one per participant, that updates the scr eens on all par-
ticipants. In this case, remote execution is preferred to
remote method invocation asthere isno useful return value
and remote execution allows fast one-way communi cation.

Individual messages in adapt al k, and other chat ap-
plications, consist of single lines of characters, usually no
more than 50-60 characters. The goal of achat application
isto provideashort response-timeto al participants so that
aconversation can makequick progress. Theresponse-time
for a particular participant depends on the latency between
it and the central server. Giventhelatenciesof al thelinks,
the primary knob that adapt al k can turn, to maintain a
low response-timefor al participants, isthe position of the
central server.

4.1 Mobility policy

There are two main features of the adapt al k mobil-
ity policy. (1) continuous tracking of the instantaneously
most-suitable-siteand (2) deferral of server-motion till the
potentia for a significant and stable performance advan-

tage has been seen. The first feature allows it to quickly
take advantage of opportunities for optimization; the sec-
onds hel psensure thegain isgreater than the cost. The goal
of adapt al k isto minimize the maximum response-time
seen by any participant. The migration policy of adaptalk
tries to minimize this cost function.

As mentioned in the previous section, the god of
adapt al k is to minimize the maximum response-time
seen by any participant. The suitability of amachine asthe
location of central server ischaracterized by the maximum
over the network latency measures for al participants. The
machine that achievesthe lowest measureis designated the
most-suitable-site.

We expect three types of variaions in the network
characteristics which may be cause for migration: (1)
popul at i on variations, which represent changes in the
distribution of users on the network, as participants join
or leave an ongoing conversation and their machines be-
come available (or unavailable) as potentia locations to
place nsgboar d; (2) spati al variations, i.e. stable
differences between latencies of different links; and (3)
t enpor al variations, i.e. changesinthelatency of alink
over aperiod of time.

Adapt al k’s migration policy, shown in pseudo-code
in Figure 3, can adapt to all threetypes of variations. This
algorithmisrun at the location that hosts the nsgboar d
each time a message is posted. The algorithm runs as part
of thepost _nsg method at themsgboar d.

A new site for the central server is selected whenever:
(2) one of the sites that does not currently host the server
receives more than a threshold score; or (2) the current
site receives a very low socre over a threshold number.
The first condition is used to move the server to locations
that consistently promise better performance; the second
conditionisused to quickly move avay from locationsthat
provide poor performance.

A count in maintained for each host where nsgboar d
may be housed. Thiscountisinitializedto 0 and iscleared
when a participant enters or leaves the conversation. Con-
sider the case with a fixed number of participants with
significant spatial variation in network latency and little
tempora variation. In this case, the migration agorithm
rapidly recognizes the best location for the msgboar d,
but waits until this choice has been ratified over some pe-
riod of time (count > w n_t hr eshol d) before mov-
ing msgboar d. As shown in Section 5, this policy d-
lows adapt al k to effectively insure itself against poor
initial placement of the nsgboar d. Once a good lo-
cation has been found, the nsgboar d does not move,
unless temporal variationsor changes in population distri-
bution cause another node to become a substantially bet-
ter location (i.e. count[w] > wi n_threshol d) or

the current host to become a substantially bad choice (i.e.
count[curr _engine] < loss_threshold). In
such cases, themsgboar d will move during the conversa-
tion. After initial experimentswithadapt al k, we set the
wi n_t hreshol d tobe 25 x n, thel oss_t hreshol d
to be 12 x n and the deci si on_cycl e to be 50 x n.
Here, n is the number of participants. The length of the
deci si on_cycl e was st large enough to amortize the
cost of movement in cases where large temporal variations
or fluctuations in population distribution cause frequent
repositioning.

Get the all to all latency map from Konodo;
Find the site s that would minimze the nax
latency for nessages posted to nsgboard;

count[s] = count[s] + 1; rounds++;
let wbe the site with the | argest count;
I et curr_engine be the engine which
currently houses nsgboard;
/1 Found a clear cut w nner.
if (count[wj > win_threshold) return w
else if (rounds % decision_cycle == 0) {
/1 I's the current engine a bad |ooser ?
if (count[curr_engine] > loss_threshold) {
clear count for each host;
return curr_engine;
} else {
/1 Current engine is a bad |ooser.
| et new_host be the host with the
maxi mum count ;
clear count for each host;
return new_host;

}

} else return null; // cycle not yet over.

Figure 3: Decision Algorithm for msgboard placement
used in Adaptalk. This agorithm is run at the location
where the msgboard resides each time amessage is posted.

5 Evaluation

To evauate the performance impact of network-aware
adaptation on the Internet, we performed two sets of exper-
iments. First, we monitored round-trip times for 32-byte
ICMP packets sent to alarge set of hosts over several days.
The goal of these experiments was to study the spatial and
tempora variationin network latency on the Internet. Re-
sultsfrom this study are presented in section 5.1.

Second, we measured the performance of three versions
of adapt al k over long-haul networks, using traces col-
lected during the internet study. Our evaluation had two
main goals: (1) to determine if network-aware placement

of components of an application distributed over multiple
hostson the Internet providessi gnificant performance gains
over a network-oblivious placement; and (2) to determine
if dynamic placement based on online network monitor-
ing provides significant performance gains over aone-time
placement based on initia information. Results from this
study are presented in section 5.3.

5.1 Variationsin Internet latency

We selected 45 hosts: 15 popular . comweb-sites (US),
15 popular . edu web sites (US) and 15 well-known hosts
around the world. These host were pinged from four dif-
ferent locations in the US. The study was conducted over
several weekdays, each host-pair being monitored for at
least 48 hours. We used the commonly available pi ng
program and sent one ping per second. This resolution
was acceptable as our goa was to discover medium-term
(30sec/minutes) and long-term (hours) variations.

The conclusions of our study, briefly, are: (1) thereis
largespatia variationininternet latency (theper-hour mean
latency varied between 15 ms and 863 msfor US hostsand
between 84 msand 4000 ms for non-US hosts); (2) thereis
alarge and stable variation in the latency of a single host-
pair over the period of aday (maximum daily variationin
per-hour mean latency for US hosts was 550 ms and for
non-US hosts was 5750 ms); (3) Thereis alot of jitterin
the latency measures but in most cases, the jitter is small.
(4) There areisolated peaks in latency that appear only for
asingletimeinterval.

52 Experimental Setup

Having established that there are significant spatia and
temporal variationsin network latency on the internet, we
examined how well adapt al k could adapt to these vari-
ations.

To simulate the characteristics of long-haul networks,
we decided to run our experiments over a low-latency
LAN and delay al packets based on the ICMP pi ng
traces described above (see Figure 4 (8). This ap-
proach also alowed us to perform repestable experi-
ments. To ensure that delaying packets, instead of us-
ing a real network, does not skew the latency messures,
we performed a simple test. Free-running Komodo mon-
itors were ingtaled a bookwor m cs. und. edu and
jarl sberg.cs.w sc. edu and were used to collect
UDP latency measures between this host-pair. In paral-
lel, atrace of ICMP ping times between these two hosts
over the same period (5000 sec) was collected. This trace
was later fed into trace-driven Komodo monitors running
on two hosts on our LAN. The latency measures reported
by the trace-driven monitors matched quite well with the

actual |atency measures reported by free-running monitors.
The average of the actua latency measures was 128 ms
(std dev = 64); the average of the values reported by the
trace-driven monitorswas 144 ms (std dev = 68).

We performed all our experiments on four Solaris ma-
chines on our LAN. We picked six trace-segments from
the internet study and used them to delay packets be-
tween the machines. All these segments were over the
noon-2pm EDT period.* These traces were selected to ap-
proximate the network latency spectrum observed in the
internet study. Hosts participating in the selected traces
include: j ava. sun. com home. net scape. com
www. opent ext . com cesdi s. gsf c. nasa. gov,
www. monash. edu. au and www. ac. il . This setup
makes the four local machines behave like four far-flung
machines on the internet. Figure 4 (b) shows the configu-
ration used for the experiments.

53 Experiments

We performed a series of experiments to evaluate the
benefits of adapting to population variation, spatial vari-
ation and temporal variation. The experiments consisted
of running three different versions of the chat server. The
first version, caled static, had no migration support and
no network-awareness. The location of the nsgboar d
was chosen in a network-oblivious fashion. The second
version was a stripped-down version of adaptalk, called
one-shot. It used network information from Komodo to
find the best initial placement for thenmsgboar d, and used
mobility support to moveit there. After initial placement,
migration decisions and network-awareness were turned
off. Thethird version, caled dynamic was the full-fledged
adapt al k, asdescribed in section 4. It used on-linemon-
itoring and dynamic placement to positionthensgboar d.

The performance of static depends on the location of
themsgboar d. If static chooses the same | ocation as one-
shot, both would have the same performance. On the other
hand, since staticis network-oblivious, itisjust aslikely to
placethenmsgboar d at theworst possiblelocation. Asthe
performance of one-shot aready presents a rough upper-
bound of static's performance, we deliberately chose the
worst initial placement when running static.

Adaptation to Population Variation: To evaluate the ef-
fect of changing user distribution we used the following
workload: A conversation was initiated between hosts C
and D. Host B joinsthe conversation after 15 minutes, and
host A joins after another 15 minutes. Each host sends a
sequence of 70-character sentences with a 5-second think
time between sentences. With only two hostsinitiating the

412 noon is the beginning of the daily latency peak for US networks
and the end of the daily latency peak for many non-US networks.

Adaptalk Latency Cache
<. / N\

Sumatra Komodo

Packet delay +— ICMP ping trace

f

Network

(a) Organization on each host

106

03

305

104
31

(o) (o)

(b) Avg. Latency (in ms) between hosts

Figure 4: Experimental Setup. Four local machines on a LAN were used to simulate four remote machines on the Internet
by adding delays to packets. ICMP ping traces between real Internet hosts were used to generate the delays, so asto capture

real-lifetemporal variationsin latencies.

conversation, there is no difference between the best and
worgt initia placement for the msgboar d and both the
staticand one-shot versions performidentically (both place
the nsgboar d on host D). Figure 5 (a) plots the maxi-
mum latency over all hosts for the one-shot version. Note
that even after new hosts join the conversation there is no
noticeable difference in maximum latency. In contrast, the
dynamic version adapts to the changing population work-
load. Soon after host B joinsthe conversation, the adaptive
placement policy moves the nsgboar d there, causing a
drop in the maximum latency. After host A joinsthe con-
versation, the nsgboar d moves between hosts A and B
in response to temporal fluctuations. Thiscan be seen from
the variation in latency for host B in Figure 5 (b). These
movements help keep the maximum latency steady evenin
the presence of temporal fluctuations.

Adaptation to Temporal and Spatial Variation: In this
case the client population is assumed to be stable. The
workload consists of dl 4 hostsjointly initiating a conver-
sation which runs for 75 minutes. As before, each host
generates a new sentence every 5 seconds. Inthiscase, the
network-oblivious(static) version placesthe chat server on
host D. The network-aware (one-shot) version uses|atency
information provided by Komodo to determine that host B
isamuch better placement. For thedynamicversion, initial
placement is less important as it should be able to recover
from abad initial placement. For thisversion, we placethe
nmsgboar d a host D, the worst-possible | ocation.

To avoid clutter, Figure 6 shows the performance of
these three versions in two different graphs. Figure 6 (a)
compares the maximum latency (over al participants) for
the dynamic and static versions. As seen from the sharp
drop on the left end of the graph, the dynamic version is

successfully able to move the nsgboar d away from its
bad initial placement to more suitablelocation. Figure6 (b)
compares the average maximum latency (over al partici-
pants) for the dynamic and one-shot versions. It shows
that once the dynamic version moves the server to a more
suitable location, the performance of the two versions is
largely equivalent. Thisimpliesthat adaptingto short-term
temporal variationsin a steady population workload does
not provide much performance advantage over one-shot
network-aware placement. It may, however, still be ad-
vantageous to adapt to long-term temporal variations. We
note that at the far right of graph Figure 6 (b), tempora
variationinthelink latencies do allow the dynamic version
to do better than the one-shot version.

6 Discussion

In the introduction, we had raised three questions with
respect to network-aware mobility. First, how should pro-
grams be structured to utilize mobility to adapt to varia-
tionsin network characteristics? Second, isthevariationin
network characteristics such that adapting to them proves
profitable? Finally, can adequate network information be
provided to mobile applications at an acceptable cost?

Our experience with Sumatraand adapt al k provides
some early insights about application structure suitable for
adaptive mobile programs. First, the migration policy
should be cheap so that applications don’t have to analyze
the tradeoffs of the migration decision itself. An easy-to-
compute policy alows frequent decisions and rapid adap-
tation to changes in the environment. We believe that an
easy-to-computemigration policy waskey toadapt al k's
ability to quickly find good locations for the chat server.

1400 T T T T T T T T

One-shot —
Dynamic ----

1200

1000

Latency (ms)

600 [

400 ¢

200 [

! ! ! ! ! ! ! !

500 1000 1500 2000 2500 3000 3500 4000
Time (sec)

(a) one-shot vs. dynamic for population variation.
Max latency (over dl participants) vstime.

Latency (ms)

900 T T T T T T T T

800 HostD —
HostB ----

700 |

600 [

500 |

400 |

300 [

200 [

100

500 1000 1500 2000 2500 3000 3500 4000 4500
Time (sec)

(b) Latency variationsfor hostsB and D
Jumps signify movement of the server.

Figure 5: Adaptiation to Population variation. Hosts C and D initiate the conversation. Host B joins after 900 seconds and
host A joins after 1800 seconds. The one-shot version places the chat server at host D. The dynamic version migrates the

server when new hostsjoin.

Second, good modularization hel ps an application take ad-
vantage of mobility. Modularization is important for al
distributed applications but it is more so for mobile pro-
grams as they have to make online decisions about the
placements of different components. An important ques-
tion that needs further investigation is where to place the
control for the mobility decisions (ie. should thelogic for
the mobility decisions be placed a ong with the object that
moves or is central control adequate.)

To answer the second question, we evaluated the prof-
itability of adapting to changes in the user-distribution as
well as spatial and temporal variationsin network |atency.
Adapting to changes in user-distribution led to significant
gains allowing adapt al k to find better placements as
more users came online, Support for mobility allowsappli-
cations built around a central data-structureto recover from
apoor initial placement of thisstructure by repositioningit
toamoresuitablelocation. Adaptingtotemporal variations
alonedid not not lead to significant benefits over the period
of an hour and ahaf. Inlight of thisexperience, we expect
that a simpler migration policy for adapt al k for short
periods would consider migration only when usersjoin or
leave the conversation, rather than on every message asis
currently done. Since long-term variation of latency could
aslarge as 550 ms (US hosts) and 5750 ms (non-US-hosts),
longer conversations could still benefit from adapting to

temporal variations.

Our experiments with Komodo illustrate that cheap ac-
tive monitoring can provide network information that can
be profitably exploited. Though it would be best to use
Komodo as a stand-alone system supplying network infor-
mation to many distributed applications, its cost is so low
that one can contemplate rolling Komaodo into individua
applications such as adapt al k without overloading the
network. Activemonitoringwas needed for adapt al k as
it needed information about linksthat arenot used in thecur-
rent placement but could be used in alternative placements.
Active monitoring, as implemented in Komodo, will not
be as cheap for applications that are bandwidth-sensitive
and not latency-sensitive. We are currently investigating
methods to cheaply estimate Internet bandwidth.

Finally, we would like to argue the need for mobility
as an adaptation mechanism. An alternative adaptation
mechanism, which places replicated servers at al suitable
pointsin the network, could adapt to spatia, temporal and
population variation by handing off conversations between
servers and by using dynamically created hierarchies of
servers. Itisquitelikely that for any particul ar application,
such a strategy would be able to achieve the performance
achieved by programs that use program mobility as the
adaptation tool. The advantage of mobility-based strate-
giesisthat it allows small groups of usersto rapidly set up

1800 T T T T T T T T

1600 Static placement —

Dynamic placement ----
1400

1200 1

1000

Latency (ms)

600 F 1

400 |

200 1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000
Time (sec)

(a) Dynamic vs static placement

4500

Latency (ms)

1400

1200

1000

200

T T T T T T T T

One-shot placement —
Dynamic placement ----

! ! ! ! ! ! ! !

500 1000 1500 2000 2500 3000 3500 4000
Time (sec)

(b) Dynamic vs one-shot placement

4500

Figure 6: Maximum latency (over al participants) vstimein adapt al k. The one-shot and static worst placement are
computed based on latency information available when the conversation isinitiated. The population of talkersis constant.

private communities on-demand without requiring exten-
sive server placement. Thisis facilitated by the fact that
mobility-based strategies can automatically determine and
utilize suitable server locations.

7 Reated work

Theidea of moving code, objects and processes around
adistributed system to achieve better performance and uti-
lization is not new. There are severa distinct classes of
systems that support mobility. A rough classification may
be (1) systems that support remote evaluation; (2) systems
that support passive object migration; (3) systemsthat sup-
port active thread migration; and (4) systems that support
a combination of these features.

Remote evauation (or code shipping) has been sup-
ported by severa systems - for example Java [10],
REV [17], REXDC [4] NCL [15] and the UNIX rsh fa-
cility and Avalon/Common Lisp [25].

Movement of passive objects (ie. data) is supported
by Java Object Serialization [1] and Modula 3 Network
Objects[2].

Several systems have been builtwhich permit an execut-
ing program to movewhileitisin execution ® - for example
Obliq[3], Agent TCL [24], Emerald [16], Telescript [12]

5These systems are also called Mobile Agents or Itinerant Agents in
the literature

and TACOMA [14]. We examine some of these systems
bel ow.

Process migration is similar to mobile programs. The
difference is that process migration moves the entire exe-
cution image of a process in execution. This complicates
matters- especialy for I/O objects[8] and kernel state. Pro-
cess migration has been used in homogeneous networks of
workstationsto provide better performance, utilization and
load distribution[7, 8, 20, 26]

Several distributed object systems that support mobility
have been built. Our system design has been most influ-
enced by Emerald, Oblig and Telescript which we describe
briefly below.

Emerald[16] isan object-based language and system de-
signed for the construction of distributed programs. Emer-
ald supports a "pure" object oriented model. An explicit
goa of Emerald is support for object mobility. Objects
in Emerald can freely move within the system to take
advantage of distribution and dynamically changing en-
vironments. Emerald objects can be active (ie. having an
associated process) or passive. Emerald provides fast ac-
cess to local objects by avoiding indirection. Such objects
are immobile. Mobile objects are accessed through one
extra level of indirection and hence are slower to access.
These are known as Global objects. In contrast al objects
are "Global" objectsin Sumatra. Emerald supports object
groups and different models of passing parameters to re-
motemethod invocations. Emerald runson ahomogeneous
network of workstations.

Obliq [3] is an object-oriented system that is based on
Modula-3 network objects [2]. Oblig supports enforces
adherenceto static scoping in adistributed environment and
the providestransmission of closures and objects. Objects
in Oblig don't move from a site. However, the state of an
object can be cloned and transmitted to another site.

Telescript [12] isacommercially availableagent system.
It supports the notion of agents, places and Engines. An
agent is a mobile program. A placeisaphysica location.
An Engineisan interpreter in an infiniteloop (asin Suma
tra). Agentsmigrate from engineto engineby usinga"go"
instruction. Telescript providesan authority based identifi-
cation and authentication model. An authority defines the
identity of the agent. Agents and places may discern but
not falsify authorities. Agents are allocated permits when
they arrive a a place. A permit defines what the agent
may do at the place. It may define restrictions on resource
usage, whether the agent may create other agents etc. An
agent that exceeds its alocated allowance of resources is
destroyed. An agent may impose temporary restrictionson
its own resource usage. The system then notifies it when
these temporary restrictionsare reached. Agents may meset
at pre-arranged meeting places and exchange information.
Tel escript does not support remote references. We have not
as yet addressed the problems of resource containment and
security in Sumatra.

The TACOMA system [14] defines an execution model
where agents can migrate from site to site and rendezvous
with each other. Data is packaged and placed into folders
which agents carry from siteto site. Agents may exchange
folders when they rendezvous. Agents carry briefcases
which are collections of folders. folders may contain state
information which is unpacked at the destination and &-
lows the agent to continue execution. Agents exchange
information by meeting each other at rendezvous sites and
exchanging folders. TACOMA implements a rear guard
agent to deal with site failures. The TACOMA nation of
foldersis similar to the notion of ObjectGroup in Sumatra.
Agents pay for services using electronic cash units. We
have not addressed the problem of payment for servicesin
Sumatra.

Agent TCL [24] is a TCL based agent system which
provides state mobility. Communication between agents
in Agent TCL happens through explicit message passing
(send and receive). The system supports security by public
key encryption methods.

In addition to these systems that support mobility, a
number of distributed programming systems have been de-
vel oped to ease thetask of devel oping communicating pro-
grams. Ba,Stienter and Tanenbaum give a survey of these
systems[11].

While the design of Sumatra was influenced by severa

other systems such asEmerald, Obliqg and Tel escript, Suma-
tradiffers from these systemsin afew respects. The most
significant difference is that data movement is under appli-
cation control. There is no automatic motion of objects.
For example when an application accesses public members
of aclass that is not local, an Illegal Access exception is
generated. The application may then react by moving the
execution to the Engine where the remote object resides or
move the remote object to the location where the applica
tionisrunning or react in some other "application specific"
manner 5. We believe that a high degree of application
control in deciding about migration and data movement is
key in network aware mobile applications.

The focus of our work has been to make distributed
applications achieve better performance using mobility as
atool to adapt to resource variations. We have therefore
not as yet addressed the important issues of security and
resource usage containment our implementation.

Application-transparent or system level adaptation to
wide variations in network bandwidth has been used suc-
cessfully by the designers of the CODA file system [18] to
improve the performance of applications.

Several experimental studies have been conducted on
various aspects of Internet performance.

Sanghi et a [5] present studies on round trip time mea-
surements of UDP packets. Their observations show that
round trip times show significant variability with sharp
peaks. If the peaks are ignored, the round trip time shows
a step change behavior. Thisis consistent with our obser-
vations.

Paxson [21, 22] has experimentally studied the various
aspects of Internet performance. His study on routing con-
cludes that in the Internet, the magjority of routes persist
for days. Further, approximately half of the connections
displayed routing asymmetry. Thusthe expected delay go-
ing from host A to host B is likely to be different from
the expected delay going from host B to host A. Paxson's
study concludes that traffic various quantities of interest
such as packet inter arrival time may be explained with a
self similar modd.

Golding [9] has investigated methods to predict RTT
measurements and bandwidth using moving averages.
Their work implies that bandwidth estimation using pre-
vious observations alone as a basis for prediction does not
work well.

Carter and Crovella[19] propose a bandwidth probing
scheme to estimate the bandwidth of a connection. They
observethat congestionisusually caused by queuing delays
at abottleneck link. The base bandwidth of the connection
is estimated by the speed of the bottleneck link. Thisis
done by sending packets in succession such that there is

6The exception handling facilities of Javacome in handy here.

a high probability that they will queue one &fter the other
at the bottleneck router. The packet inter-arrival timeis a
measure of how fast the bottleneck router can process the
packetsand henceindicatesthe basebandwidth. A decision
filtering method is used to eliminate false measurements
caused by various effects such as downstream congestion,
packet loss, competing traffic and queuing failure.

8 Conclusonsand futurework

Thispaper isafirst stepin demonstrating that distributed
programs can use mobility asatool to adapt to variationsin
their operating environment. Our exploration of network-
aware mobile programs lead us to the following conclu-
sions. First, network-aware placement of components of a
distributed application can provide significant performance
gains over a network-oblivious placement. For short term
applications (applicationsthat runfor an hour or so) exploit-
ing spatial variations as well as variations in the number
and location of the clients achieves most of the gains. For
longer-runningapplications, exploitingtemporal variations
might be worthwhile. Second, effective mobility decisions
can be based on coarse-grained monitoring. This allows
cheap active monitoring without losing effectiveness. Fi-
nally, there is significant spatial and tempora variaion in
Internet latency which can be effectively adapted to by
mobile objects.

We believe that there is a class of long running appli-
cations over the Internet for which resource-aware mobil-
ity could provide flexibility and performance which would
takealot more effort to achieve by other means. Onefuture
direction we would liketo pursueisto identify such appli-
cations and understand their structure and requirements.
Some of the examples we intend to study include resource-
aware pre-fetching for web clients, sequence servers and
multi-database queries over the Internet. Another direction
that we plan to explore s efficient distributed monitoring
of other resources, in particular, network bandwidth and
server availability. We are investigating cheap methods
of estimating network bandwidth. An important question
that we areinvestigatingishow accurate resource estimates
need to be in order to benifit from resource aware mobility
and how the accuracy of estimation affects performance.

Acknowledgements

Theauthorsare grateful to MustafaUysal, Manuel Ujal-
don and the anonymous referees for their suggestions.

References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

Java object serialization specification.
http://chatsubo.javasoft.com/current/serial/index.html.

A. Birell, G. Nelson, S. Owicki, and E. Wobber. Network
objects. In ACM SIGOPS, pages 217-229, Dec. 1993.

L. Cardelli. A language with distributed scope.
In 22"¢ ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Jan. 1995.
http:/AMww.resear ch.digital.conVSRC/Oblig/Oblig.html.

C. ching Chang. Rexdc - aremote execution mechanism. In
ACM SIGCOMM, pages 106—115, 1989.

D.Sanghi, A.K.Agrawala, O.Gudmundsson, and B.N.Jain.
Experimental assessment of end-to end behavior on inter-
net. Technical Report CS-TR-2909, University of Maryland,
June 1992.

E.Jul, H.Levy, N.Hutchinson, and A.Black. Fine-grained
mobility in the emerald system. ACM Transactionson Com-
puter Systems, 6(2):109-133, Feb. 1988.

E.Zayas. Attacking the process migration bottleneck. In
11th. ACM Symposium on Operating Systems Principles,
pages 13-24, Nov. 1987.

F.Douglis and J.Ousterhout. Process migration in the Sprite
operating system. In 7¢" International Conferenceon Dis-
ributed Computing Systems, pages 18-25, Sept. 1987.

R. A. Golding. End-to-end performance prediction for the
internet (work in progress). Technical Report UCSC-CRL-
92-26, University of California at Santa Cruz, June 1992.

J. Goslingand H. McGilton. TheJavalanguageenvironment
white paper, 1995. Available at : http://mww,java.sun.com.

H.E.Bal, J.G.Stiener, and A.S.Tanenbaum. Programming
languagesfor distributed computing. ACM Computing Sur-
veys, 21(3), 1989.

G. M. Inc. Telescript Technology: Mobile Agents. Available
at : http://imww.genmagic.com/Tel escript/Whitepapers.

G. M. Inc. Telescript Language Language Ref-
erence and Users Guide, 1995. Available at
http: /Amwww.genmagic.com/Telescript/TDE.

D. Johansen, R. van Renesse, and F. B. Schneider. Anintro-
duction to the tacoma distributed system version 1.0. Tech-
nical Report 95-23, University of Tromso, 1995. Available
at : http://tklabl.cs.uit.no/DOS/Tacoma/Publications.html.

J.R.Falcone. A programmableinterface languagefor hetero-
geneoussystems. ACM Transactionson Computer Systems,
5(4):330-351, Nov. 1987.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the emerald system. In Proceedings of
the Eleventh Symposium on Operating Systems Principles,
Austin, Texas, 1987.

JW.Stamos and D.K.Glifford. Implementing remote eval-
uation. |EEE Transactions on Software Engineering,
16(7):710-722, July 1990.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

L.B.Mummert, M.R.Ebling, and M.Satyanarayanan. Ex-
ploiting Weak Connectivity for Mobile File Access. In
Proceedings of the 15th. A.C.M Symposium on Operating
Systems Principles, Dec. 1995.

R. L.Carter and M. E.Crovella. Dynamic server selection
using bandwidth probing in wide-area networks. Technical
Report BU-CS-96-007, Boston University, 1996.

M. Litzkow and M. Livny. Experienceswith the condor dis-
tributed batch system. In |EEE Workshop on Experimental
Distributed Systems, Huntsville, Al., 1990. Available at :
http:/AMww.cs.wisc.edu/condor/ publications.html.

V. Paxson. End-to-end routing behavior in the inter-
net. In ACM SIGCOMM, Aug. 1996. Available at :
http://ftp.ee.lbl.gov/nrg-papers.html.

V. Paxson and S. Floyd. Wide-area traffic: The failure of
posson modeling. |IEEE/ACM Transactionson Networking,
3(3):226-244, 1995. Availableat : http://ftp.ee.lbl.gov/nrg-
papers.html.

M. Ranganathan, A. Acharya, and J. Saltz. Distributed re-
source monitors for mobile objects. In International Work-
shop on Operating System Support for Object Oriented Sys-
tems, 1996. Availableat : http://www.cs.umd.edu/ acha.

R.S.Gray. Agent tcl: A flexible and secure mobile-
agent system. In Proceedings of the Fourth Annual
Tcl/Tk Workshop (TCL 96), July 1996. Available at
:http:/Amww.cs.dartmouth.edu/ agent/papers.html.

S.M.Clamen, L.D.Lebengood, S.M.Nettles, and J.M.Wing.
Reliable distributed computing with avalon/common lisp.
In Inter national Conferenceon Computer Languages, pages
169-179, New Orleans, LA, 1990.

J. M. Smith. A survey of process migration mechanisms. In
Operating Systems Review, May 1988.

